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Abstract

The derivation process for the model equation is shown for the natural convection of water (diamagnetic) under

both gravity and magnetizing force fields and numerically solved for the Rayleigh–Benard convection in a shallow

cylinder heated from below and cooled from above. The cylindrical enclosure was located at two levels in the bore of a

super-conducting magnet, where the radial component of the magnetizing force is minimal and its axial component

prevails. The cylindrical enclosure was assumed to be located coaxially with the bore of the magnet, and a two-

dimensional model equation was presumed. Sample computations were carried out without or with a gravity force for

various strengths of Rayleigh number and magnetic induction. When the enclosure was placed above the coil center,

where the magnetizing force is opposed to the gravitational force, the average Nusselt number decreased with increasing

strength of the magnetic field. When the enclosure was placed below the coil center, where the magnetizing force is

parallel to gravity, the average Nusselt number increased above unity even at Ra ¼ 1000 and 1500. All of the data
agreed favorably with the classical experimental data of Silveston when plotted against the magnetic Rayleigh number

proposed by Braithwaite et al.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Rayleigh–Benard natural convection of water has

been extensively studied from laminar to turbulent flow

regions in a terrestrial state. The present study examines

the effect of body force exerted by a magnetic field on the

Rayleigh–Benard convection of water. Recent develop-

ment of a super-conducting magnet supplies large gra-

dient of magnetic field to provide magnetizing force for

any materials depending on the magnitude of magnetic

susceptibility. Most materials are classified as diamag-

netic, having a negative magnetic susceptibility and be-

ing repelled by a strong magnetic field. Materials with a

positive magnetic susceptibility are called paramagnetic.

Representative diamagnetic materials include water

(vm ¼ �9:02� 10�6) and bismuth (vm ¼ �1:65� 10�4),
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and paramagnetic materials include oxygen gas (vm ¼
1:91� 10�6) and manganese (vm ¼ 9:0� 10�4) [1].
According to Curie�s law, the mass magnetic sus-

ceptibility v of a paramagnetic material is inversely
proportional to its absolute temperature. Thus a para-

magnetic fluid convects under a gradient magnetic field

if there is a temperature distribution. Magnetizing force
~ffm is given as follows according to Bai et al. [2].

~ffm ¼ vm
2lm

~rrb2 ¼ qv
2lm

~rrb2 ð1Þ

Wakayama�s group [2–6] and Kitazawa�s group [7–11]
have reported various new findings on the phenomena

associated with magnetizing force. Tagawa and co-

workers [12,13] derived model equations in similar

procedure to the Boussinesq approximation for para-

magnetic gases and carried out numerical computation

with experimental verification.

For a diamagnetic fluid, the mass magnetic suscep-

tibility is constant, but the magnetizing force appears

due to the change of density q in the above Eq. (1). In
erved.
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Nomenclature

~aa position vector on a coil¼ða; zcÞ [m]
a radius of a coil [m]
~AA ~aa=h ¼ ðA; ZcÞ
~bb magnetic induction [T]

ba lmi=h [T]
~BB dimensionless magnetic induction¼~bb=ba
Cp specific heat at constant pressure [J/(kgK)]

d diameter of an enclosure¼ 3h [m]
~ffm magnetizing force, Eq. (1) [N/m3]

g gravitational acceleration [m/s2]

h height of a cylindrical enclosure [m]

i electric current in a coil [A]

k thermal conductivity of water [W/(mK)]

Nu Nusselt number¼Qconv=Qcond
p pressure [Pa]

p0 perturbed pressure [Pa]

pa reference pressure¼ qa2=h2 [Pa]
P dimensionless pressure¼ p0=pa
Pr Prandtl number¼ m=a
Qcond conduction heat transfer rate [J/s]

Qconv convection heat transfer rate [J/s]

r radial coordinate [m]

~rr position vector in an enclosure¼ðr; zÞ [m]
R r=h
~RR ~rr=h ¼ ðR; ZÞ
Ra Rayleigh number¼ gbðhh � hcÞh3=ðamÞ
Ram magnetic Rayleigh number¼Ra½1� cBzðoBz=

oZÞ�
t time [s]

ta h2=a [s]
T dimensionless temperature¼ðh � h0Þ=ðhh�

hcÞ

u velocity component in a radial direction

[m/s]

ua a=h [m/s]
U u=ua
w velocity component in an axial direction

[m/s]

wa a=h [m/s]
W w=ua
z axial coordinate [m]

Z z=h
zc axial position of a coil [m]

Zc zc=h

Greek symbols

a thermal diffusivity of water¼ k=ðqCpÞ [m2/s]
b volumetric coefficient of expansion of water

at h0 [1/K]
c vb2a=ðlmghÞ
h absolute temperature [K]

hh temperature of the hot wall [K]

hc temperature of the cold wall [K]

h0 ðhh þ hcÞ=2 [K]
l viscosity of water [Pa s]

lm magnetic permeability in a vacuum [H/m]

m kinematic viscosity of water¼ l=q [m2/s]
q density of water [kg/m3]

s dimensionless time¼ t=ta
v mass magnetic susceptibility [m3/kg]

vm volumetric magnetic susceptibility¼ qv

Z 

R 

COLD 

HOT 
g 
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the present study, a model equation for magnetizing

force in a diamagnetic fluid such as water was derived in

a similar procedure to the Boussinesq approximation,

and numerical computation was carried out for the

Rayleigh–Benard convection of water in a shallow cy-

lindrical enclosure with a two-dimensional convection

model.
Fig. 1. Schematics of the system considered.

2. Derivation of model equation

The magnetizing force is included in the momentum

equation as well as the gravitational buoyant force, as

follows, for the system shown in Fig. 1.

qD~uu=Dt ¼ � ~rrp þ lr2~uuþ ðqv=ð2lmÞÞ ~rrb2

þ qð0; 0;�gÞT ð2Þ

The sign of g is negative because the z-coordinate is
defined upward, against gravity. The magnetic suscep-
tibility of water v is negative and independent of tem-
perature. The equation of state for water may be

represented as follows.

q ¼ q0 þ ðoq=ohÞ0ðh � h0Þ ¼ q0 � q0bðh � h0Þ ð3Þ

where

b ¼ �fðoq=ohÞ=qg0 ð4Þ
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Fig. 2. Location of enclosure in the bore space of a super-

conducting magnet.
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b is the volumetric coefficient of expansion due to tem-
perature variation.

When the fluid is at a uniform temperature h0 the
magnetizing force and the gravity force are curl-free,

and no convection ~uu ¼ 0 is resulted with p ¼ p0 and
q ¼ q0. Then, Eq. (2) becomes,

0 ¼ � ~rrp0 þ q0vrb2=ð2lmÞ � q0gð0; 0; 1Þ
T ð5Þ

Subtracting Eq. (5) from Eq. (2) gives

qD~uu=Dt ¼ � ~rrðp � p0Þ þ lr2~uuþ fvðq � q0Þ=ð2lmÞg ~rrb2

þ ðq0 � qÞgð0; 0; 1ÞT ð6Þ

Introducing perturbed pressure p0 ¼ p � p0, where p is at
a convection state and p0 at a static state, and consid-
ering Eq. (3), we can derive the following equation.

qD~uu=Dt ¼ � ~rrp0 þ lr2~uu� fq0bvðh � h0Þ=ð2lmÞg ~rrb2

þ q0bgðh � h0Þð0; 0; 1ÞT ð7Þ

Presuming q ffi q0 and introducing kinematic viscosity
m ¼ l=q0,

D~uu=Dt ¼ � ~rrp0=q0 þ mr2~uu� fbvðh � h0Þ=ð2lmÞg ~rrb2

þ bgðh � h0Þð0; 0; 1ÞT ð8Þ

This leads to the following non-dimensionalized system

equations, including equations of continuity, energy and

Biot–Savart�s law.

~rr � ~UU ¼ 0 ð9Þ

DT=Ds ¼ r2T ð10Þ

D~UU=Ds ¼ � ~rrP þ Prr2~UU � c � Ra � Pr � T � rB2=2

þ Ra � Pr � T � ð0; 0; 1ÞT ð11Þ

~BB ¼ 1

4p

I
d~AA� ð~AA�~RRÞ

j~AA�~RRj3
ð12Þ

The following dimensionless variables were employed.

ðR; ZÞ ¼ ðr; zÞ=h; U ¼ u=ua; W ¼ w=wa;

s ¼ t=ta; P ¼ p0=pa; ~BB ¼~bb=ba;

T ¼ ðh � h0Þ=ðhh � hcÞ; ua ¼ wa ¼ a=h;

ta ¼ h2=a; ba ¼ lmi=h; pa ¼ qa2=h2;

Ra ¼ gbðhh � hcÞh3=ðamÞ; Pr ¼ m=a;

c ¼ vb2a=ðlmghÞ

The initial conditions are as follows.

U ¼ W ¼ T ¼ 0 at s < 0

The boundary conditions are as follows.

U ¼ W ¼ 0 at Z ¼ 0; 1 and R ¼ 1:5

T ¼ 0:5 at Z ¼ 0
T ¼ �0:5 at Z ¼ 1

oT=oR ¼ 0 at R ¼ 1:5

The above equations were approximated by finite dif-

ference equations and numerically solved by the

HSMAC method [14]. The inertial terms were approxi-

mated by the UTOPIA scheme [15]. The grid number

employed was 30 · 20 in radial and vertical coordinates.
Symmetry about the cylinder axis was assumed, since

the magnetic coil is placed coaxially with the cylindrical

enclosure.
3. Model systems and computed result

Model systems are shown in Fig. 2. The vertical

cylinder is placed either at 56.3 mm above the coil (po-

sition 1) or 56.3 mm below the coil (position 2) for the

cylindrical enclosure of 15 mm in height and 45 mm in

diameter. The radius of the electric coil is 90 mm. This

combination of sample dimensional values for geometry

defines the strength of the magnetic field uniquely. In

this system the enclosure is assumed to be placed inside

the bore space of a super-conducting magnet.

3.1. Effect of grid numbers

Numerical computations were carried out with finite

difference approximation, and some truncation error

may be included. To estimate its magnitude, sample

computations were carried out for position 1, at Ra ¼
7000 and Pr ¼ 6 for three cases of c ¼ 0, )600 and )1000.



Table 1

Effect of grid numbers on the average Nusselt number for

position 1, Ra ¼ 7000, Pr ¼ 6
c Computed

with 30· 20
grids in r � z
coordinates

Computed

with 60 · 40
grids in r � z
coordinates

Relative error

0 2.081 2.044 0.018

)600 1.738 1.714 0.014

)1000 1.336 1.321 0.011
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Grid numbers of 30· 20 and 60 · 40 in the radial and
vertical coordinates were also tested. The results are lis-

ted in Table 1. The maximum difference is 1.8%, and we

selected grid numbers 30 · 20 for subsequent computa-
tions, since the main concern of this report is to clarify

the general effect of magnetic field on the Rayleigh–Be-

nard convection of water rather than determine accurate

numerical values of the average Nusselt number.

3.2. Computed result for the system without gravity

For the system without gravitational acceleration, we

can see the effect of magnetizing force alone. Transient

computation converged smoothly. For the system at

g ¼ 0, c becomes infinity and Ra becomes zero, but the
Table 2

Computed results for g ¼ 0 and Pr ¼ 6 and equivalent dimensional v
Position cRa Ram N

1 )7.0· 106 )4121 1.

2 )2.9· 106 1708 1.

)3.5· 106 2061 1.

)7.0· 106 4121 1.

Fig. 3. Computed isotherms (left) and velocity vectors (right) in a c

gravitational acceleration but with a magnetic field for Pr ¼ 6: (
cRa ¼ �3:5� 106, Nu ¼ 1:063; (iii) position 2, cRa ¼ �7:0� 106, Nu
system can be defined with finite values of cRa. Table 2
shows the converged values of the average Nusselt

number. If the temperature difference between the hot

and cold walls is 10 K, the magnetic induction at the

center of the enclosure is 0.923 T for cRa ¼ �7:0� 106
and 0.653 T for cRa ¼ �3:5� 106. Fig. 3 shows com-
puted isothermal contours and velocity vectors for

positions 1 and 2 at Pr ¼ 6 without gravitational accel-
eration. At position 1, the magnetizing force acts in the

positive Z-direction, and the water layer in a cylinder
heated from below and cooled from above approaches

the conduction state. In (i), the velocity vectors are

drawn on a scale of 100 times larger than those in (ii)

and (iii) for easy visualization. The actual absolute ve-

locity is almost zero, and a quasi-conduction state is

attained. On the other hand, at position 2, the magne-

tizing force acts downward in the Z-direction, and the
magnetizing force acts to give larger Nusselt number

with the increase in jcRaj.
According to the derivation of the model equation,

this can be explained in another way as follows. Water

near a hot wall has lower density and is less repelled by

the magnetic field than that near a cold wall. There-

fore, at position 1, water receives less accelerating force

with the increase of jcRaj, but at position 2, water is
unstable and convection results if jcRaj is more than
critical state.
alue of the system in Fig. 2

uave: Dh [K] bzjcenter [T]
000 10 0.923

0008 10 0.594

063 10 0.653

674 10 0.923

ross section of a vertical shallow cylindrical enclosure without

i) position 1, cRa ¼ �7:0� 106, Nu ¼ 1:000; (ii) position 2,
¼ 1:674.



Table 3

List of average Nusselt number at positions 1 and 2 for Pr ¼ 6 under a gravity field
c Ram=Ra at

position 1

Average Nusselt number at position 1 Ram=Ra at
position 2

Average Nusselt number at position 2

Ra ¼ 3000 Ra ¼ 7000 Ra ¼ 12000 Ra ¼ 1000 Ra ¼ 1500 Ra ¼ 3000
0 1.000 4.393 2.081 2.463 1.000 1.000 1.000 1.393

)200 0.882 1.278 1.973 2.343 1.118 1.000 1.000 1.493

)400 0.764 1.150 1.866 2.245 1.236 1.000 1.000 1.581

)600 0.647 1.024 1.738 2.129 1.353 1.000 1.054 1.659

)800 0.529 1.000 1.565 1.985 1.471 1.000 1.119 1.729

)1000 0.411 1.336 1.796 1.589 1.000 1.184

)1200 0.293 1.059 1.495 1.707 1.000 1.248

)1300 0.235 1.000 1.290 1.765

)1400 0.176 1.000 1.070 1.824 1.000

)1500 0.117 1.000 1.000 1.883 1.002

)1600 0.058 1.000 1.942 1.023

)1698 0.000 2.000

)1800 2.060 1.064

)2000 2.178 1.107

)2200 2.295 1.151
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3.3. Computed result for the system in a gravity field

Numerical computations were then carried out for

the system placed in a gravity field. Transient compu-

tation again converged smoothly with the converged

values of the average Nusselt numbers as listed in Table

3. These are also plotted in Fig. 4(a) for position 1 and

Fig. 4(b) for position 2. For position 1, when the

strength jcj of the magnetic field is increased, the average
2.2
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γ [−]
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Fig. 4. Summary of computed average Nusselt numbers for

Pr ¼ 6 versus the strength of magnetic field c with a parameter
of Rayleigh number: (a) position 1 and (b) position 2.
Nusselt number decreases toward the conduction state

of Nu ¼ 1 with the increase of jcj for any Rayleigh
number Ra ¼ 3000, 7000, 12 000 as shown in Table 2.
This means that the system of position 1 tends to a state

of no acceleration (equivalent to micro-gravity state)

with increase in the strength of magnetic field.

Fig. 4(b) for position 2 shows that the average Nus-

selt number increases with the strength jcj of magnetic
field even for Rayleigh numbers Ra ¼ 1000 and 1500,
which are less than the critical value of Ra ¼ 1708. This
is because the magnetizing force acts to assist the grav-

itational driving force. For Ra ¼ 3000, the average
Nusselt number increases with jcj, suggesting the en-
hancement of convection and heat transfer rate due to

the magnetizing force.

Fig. 5 shows computed isothermal contours for

position 1 at (a) Ra ¼ 3000 and (b) Ra ¼ 12000. The
magnitude of c for (a) is 0, )400 and )800 downward,
and that for (b) is 0, )800 and )1600 downward. At
position 1, the direction of magnetizing force vector is

upward, as shown at the right-hand side of graphs, and

the net acceleration decreases with the increase in jcj.
The conduction state, Nu ¼ 1:000, is finally attained for
any value of the Rayleigh number. On the other hand, at

position 2, the magnetizing force acts to assist the ac-

celeration with the increase in jcj, and the Rayleigh–
Benard convection is enhanced, as shown in Fig. 6.
4. Discussion

Braithwaite et al. [16] reported the experimental

Nusselt number for aqueous solutions of gadolinium

nitrate (paramagnetic) in a magnetic field and proposed

the magnetic Rayleigh number, Ram. This represents an
effective Rayleigh number for Rayleigh–Benard natural
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convection. It is derived as a summation of gravitational

buoyant force and the magnetic induced buoyant force

terms in the Z-directional momentum equation, as fol-
lows, from Eq. (11).

fmz ¼ �cRaPrT ðo=oZÞðB2=2Þ þ RaPrT

¼ �cRaPrT ðo=oZÞðB2r þ B2/ þ B2ZÞ=2þ RaPrT

In the present system in which the enclosure is located

inside the bore space of a super-conducting magnet, the

circumferential component of the magnetic induction,
B/, is zero, since the center of the coil is coincident with

the axis of the enclosure and oBr2=oZ ffi 0 at �56.3 mm
height. Thus, we get

fmz ¼ RaPrT ð1� cBZðoBZ=oZÞÞ ¼ RamPrT

From this we get the magnetic Rayleigh number.

Ram ¼ Rað1� cBZðoBZ=oZÞÞ

The magnetic Rayleigh numbers are tabulated in Table 3

corresponding to the value of c, since BZ and (oBZ=oZ)
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are fixed for the present system of Fig. 1 at the center of

the enclosure as BZ ¼ 0:05076 and ðoBZ=oZÞ ¼ 0:0116,
as computed from Eq. (12).

This magnetic Rayleigh number was also employed

to correlate the Rayleigh–Benard convection of air in a

magnetic field by Maki et al. [17] and was confirmed to

be appropriate in scale.

The computed average Nusselt numbers are all plot-

ted versus Ram for the system without and with a gravity
force and for positions 1 and 2 in Fig. 7. The experi-

mental data of Silveston [18] are also plotted with a solid

line for comparison. The computed average Nusselt

numbers are slightly smaller than the experimental data,

which were obtained for a very shallow layer. The pre-

sent enclosure has diameter/height¼ 3, and the slightly
smaller Nusselt number may be reasonable. The experi-

mental data of Braithwaite et al. are also plotted, though

they differ from the curve of Silveston.
5. Conclusion

The Rayleigh–Benard convection of water (diamag-

netic fluid) in a cylindrical enclosure placed in a bore

space of a super-conducting magnet was considered as a

model. A model equation of convection due to magne-

tizing force was derived by a similar process to the

Boussinesq approximation for buoyancy convection.

The model equations were numerically solved for two

locations of the enclosure in the bore space of a super-

conducting magnet: above (position 1) and below

(position 2) the coil center. These two locations were

selected to have the minimum radial component of the
magnetizing force. At position 1, the direction of the

magnetizing force is against gravity and the average

Nusselt number converges to unity with jcj, which rep-
resents the strength of magnetic field. At position 2, the

direction of the magnetizing force is downward, parallel

to the gravity force, and the average Nusselt number

increases and convection occurs even for Rayleigh

numbers less than the critical value of 1708. These

Nusselt numbers are plotted against the magnetic Ray-

leigh number Ram reported by Braithwaite et al. to re-
veal a good agreement with the classical experimental

data of Silveston, although the experimental data of

Braithwaite et al. differ from those of Silveston.
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